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The results of computer simulations are presented which give evidence for the existence of an interesting
symmetry in a many-agent model which demonstrates, in special cases, both Bose-Einstein and Fermi-Dirac
statistics. This symmetry is expressed in the close vicinity of the mean values of the degree of ultrametricity
and the fraction of isosceles of the sets of agent memories (histories) coded by two different information-loss
coding schemes. It is shown that this (in some sense) approximate statistical supersymmetry is probably broken
at low temperatures—below some condensation limit. This breaking leads to the appearance of specific coding
schemes for boson and fermion histories. The meaning of this specificity is revealed by applying the interpre-
tation of the many-agent model described earlier [A. A. Ezhov and A. Yu. Khrennikov, Phys. Rev. E 71,

016138 (2005)].
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I. INTRODUCTION

Many-agent models widely used in econophysics possess
many interesting properties inherent to complex systems in-
cluding phase transitions [4] with symmetry breaking [5]. In
general, the agents considered have various cognitive abili-
ties (and their limitations), e.g., different strategies for
decision-making and their memories can differ in type and
length (in particular, a limited memory is enough for
bounded rationality of economical agents) [2,3]. For ex-
ample, in the minority game (MG) [5], the agents memorize
the number of cases where the use of a given strategy was
successful, thus they were able to count these events. On the
other hand, these agents can use a set of results of each
game’s turn, so they share some public accessible memory
or, in general, have access to the common external informa-
tion which contains the game history. For more complex and
realistic models it is possible to suggest that sometimes the
agents can extract different incomplete and, in a certain
sense, incompatible information from the same sequence of
events. The most challenging is not the ad hoc postulating of
such memory codes, but the possibility to justify them, at
least qualitatively, using different symmetries or conservation
laws.

In econophysics many physical ideas have been used in
developing many-agent models; but sometimes the relevance
of, e.g., conservation laws is strongly criticized [6]. It is also
recognized that, e.g., since in financial markets new assets
appear and old ones disappear, the system is not conserva-
tive. Different symmetries may be used, e.g., to recognize
that economical theory should produce the same results if
units of currency change [7]. Besides the econophysical
models can consider both homogeneous and heterogeneous
ensembles of agents. For example, a phenomenon of non-
equilibrium phase transition was found in a homogeneous
model of negotiation dynamics [4], while many other inter-
esting models, e.g., MG, have to be heterogeneous, i.e., con-
sider the agents of different types. For our purpose it is ex-
pedient to consider a heterogeneous model with agents
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which apply different strategies and, therefore, in principle
may need different schemes of memorization of their expe-
rience. One of the models with two different types of agents
having two different strategies has been recently presented
by authors in [1]. The agents imitating the so-called right
brain and left brain strategies were found to obey Bose-
Einstein and Fermi-Dirac quantum statistical distributions.
Since it is known that fermions and bosons are related in
supersymmetrical theories, it seems natural to make an effort
to find also some analog of the supersymmetry (SUSY) in
this many-agent model. This may be justified by not only
abstract curiosity: as a matter of fact, we try to demonstrate
that by studying this kind of symmetry one can evidence in
support of reasonability to assign to the agents not only two
different strategies, but also two different memories of the
same sequence of events. Moreover, these different coding
schemes became specific for different types of agents due to
the phase transition accompanied by breaking the
supersymmetry.

Remember that SUSY, a fundamental new paradigm, was
discovered by Gel’fand and Likhtman [8], Raymond [9], and
Neveu and Schwartz [10] in 1971. This model relates fermi-
ons (particles with a half-integer spin) to bosons (particles
with an integer spin), which are the constituents of matter
and forces in the standard model (SM) [11] of elementary
particles. One consequence of SUSY is the existence of a
partner for every known particle. Every fermion would have
a bosonic counterpart and vice versa. In unbroken SUSY
theories particles and their partners are identical in all re-
spects except for their spins; but so far none of these partners
have been observed. According to modern theory this is at-
tributed to the fact that SUSY is a broken symmetry.

The supersymmetry can be considered as a symmetry un-
der the exchange of classical and quantum physics. This is
due to the fact that for the bosons which can occupy the
same quantum state without any limitation there is a classical
limit of the quantum system: e.g., the quantum photon field
is equivalent to the classical electromagnetic field. On the
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contrary, there is no classical limit for fermions which can
occupy only one quantum state.

Apart from applications of the SUSY idea in particle
physics, quantum gravitation, etc., some efforts were made to
find relations between Fermi-Dirac and Bose-Einstein distri-
butions in statistical physics. Sometimes such relations take
surprising forms: e.g., one-dimensional (1D) ideal harmonic
Fermi and Bose gases have identical heat capacities [12,13].

In 1981 Witten introduced SUSY quantum mechanics
[14] as an alternative to the factorization method of
Schrodinger, Infeld, and Hull [15]. This mechanics is the
simplest form of SUSY. The method mentioned leads to a
couple of Riccati’s differential equations for the fermion and
boson degrees of freedom. Similar equations were also con-
sidered by Arnaud, Chusseau, and Philippe [16] and Rosu
[17] where, in particular, they have shown that the action
function of bosons and fermions obeys two Riccati equations
similar to those obtained for superpotential arising in super-
symmetric quantum mechanics. It is clear that this fact can
encourage a search for SUSY properties in quantum statis-
tics. Moreover, since the dependence of the chemical poten-
tial for bosons changes dramatically when the temperature
reaches its critical value corresponding to Bose-Einstein con-
densation, it seems reasonable to expect the effect of SUSY
breaking at this temperature. As shown below, in contrast to
the particle physics where SUSY is an exact symmetry, the
supersymmetry in the statistical physics can be statistical in
nature too.

In this paper some numerical evidence in favor of this
proposal is presented. Note that the relation of this evidence,
real quantum statistics, and SUSY is not straightforward be-
cause the classical many-agent model considered below
obeys real boson but only specific fermions statistics: the last
one implies the enormous degeneration of the ground state.
In a certain sense just the ensembles of bosonlike agents and
corresponding ensembles of specific fermionlike agents can
be treated as analogs of SUSY partners. At the same time,
because of the fermion specificity considered, the symmetry
between boson and fermion systems can be characterized
only as SUSY-like one.

Taking account of all these circumstances we, neverthe-
less, believe that the SUSY argument (interpreted here as a
general symmetry between bosons and fermions) is very use-
ful in studying these many-agent models and this allows us
to speculate that different agents can have not only different
memory abilities, but are also able to apply different incom-
patible coding schemes of memories. The appearance of dif-
ferent specific memory schemes will be attributed to the
symmetry breaking at low temperatures which, on the other
hand, may be interpreted as a high level of inequality in the
resource distribution in a society.

The analysis of the original many-agent model in which
the agents try to hold two different resources reveals an in-
teresting and quite reasonable meaning of the specific codes
for bosonlike and fermionlike agents. It turns out that they
are connected with the memorization of the value of the re-
source which is not automatically controlled by these agents.
Note that the problem considered in this paper shares some
common properties with other econophysical models, e.g.,
with MG it concerns the event counting memory and consid-
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ers the fluctuations of the agent ensembles at equilibrium.

To justify all the statements given above we present some
results of the computer modeling performed with a simple
analog of a many-agent model introduced in [1]. This illus-
trates the situation where both special forms of the SUSY
and SUSY breaking phenomena may be observed. The re-
sults are based on the approach initially introduced in [18]
which uses ultrametrical properties of space for agent histo-
ries. In this approach two nonequivalent information-loss
coding schemes are introduced and a very close vicinity of
some ultrametrical properties of boson and fermion en-
sembles is observed at low temperatures. Here we show that
a slightly modified version of the model described in [1]
demonstrates an analog of approximate supersymmetry at
high temperatures. This analog of supersymmetry is shown
to be naturally expected at high temperatures and broken in a
low-temperature region. The problem of determining critical
temperature is discussed: a trivial idea that the SUSY break-
ing phenomenon occurs at the temperature of Bose-Einstein
condensation (actually, this is quasicondensation) has not
found its confirmation and, as a result, turned out to be more
complicated. One of the most surprising results is that the
critical temperature seems to be defined by the behavior of
fermions rather than of bosons. In short, we suppose that the
data presented in this paper give numerical evidence that the
SUSY and SUSY breaking phenomena likely exist between
Bose-Einstein and Fermi-Dirac ensembles.

The structure of the paper is as follows. In the Sec. II we
briefly remind one of the many-agent model introduced in
[1] and describe its minor symmetrical modification suggest-
ing a symmetrical form of fermion self-interactions. In Sec.
IIT we introduce two schemes used to code agent histories
and describe ultrametric properties of their sets to be calcu-
lated and argue the possibility to observe the symmetry of
these schemes for bosons and fermions at high temperatures.
In Sec. IV we present the results of the study into ultrametri-
cal properties of the sets of boson and symmetrical fermion
histories in both high-temperature and low-temperature re-
gimes. We discuss an evident symmetry demonstration in the
high-temperature region and its breaking at a low-
temperature limit. We note that this result is not trivial be-
cause, e.g., it has been observed in the urn model equivalent
to the considered one but not in the standard urn model. In
Sec. V we proceed with studying the symmetry breaking
phenomenon and argue that it is probably connected with the
process of fermion quasicondensation in the ground state. In
Sec. VI we explain the meaning of two specific coding
schemes which are used to represent boson and fermion his-
tories. At last, in the final section we present a summary of
our results and some conclusions.

II. MODELS STUDIED

Below we present the results of the study of a symmetri-
cal variant of the many-agent model described in [1], its
equivalent urn model, and a standard urn model; as a matter
of fact, all of them demonstrate both types of quantum
statistics.

The original many-agent model considers a world consist-
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FIG. 1. (a) The model world with its cells ordered by energy
values. (b) The food is presented in the cell i with a probability P;
to the agent which occupies the cell j. This agent can go to the cell
i with a probability p;_,;. (c) Four different cases of food proposals
and the respective environment’s proposals, @ and b, to agents «
and B, correspondingly.

ing of n cells which can be occupied by N agents. These cells
are rather abstract and analogous to the energy cells, so they
are not arranged in any space structure and can be ordered
only by their energy values [Fig. 1(a)]. Every agent has two
kinds of resources which have to be held positive at any
time. The first resource degrades in time but can be compen-
sated by consuming the food which randomly appears in the
world cells from their environment. The second resource de-
creases each time the agent changes its cell. It is suggested in
[1] that the initial amount of the second resource is high
enough in order to consider its value as nonvanishing in all
time intervals considered (for simplicity it may be equiva-
lently suggested that the values of resources can be nega-
tive). The appearance of the first resource can be described
by a probability f; [Fig. 1(b)] and a cell’s energy €=
—T log f;, where the parameter T characterizes the fempera-
ture of the environment (see also [19]).

It is convenient to start from energy rather than from
probability: in fact, we assume that the cell’s energies are
equidistant, that is typical for the energy levels of particles in
a harmonic potential [20] for which Bose-Einstein condensa-
tion is subjected to both theoretical and experimental studies.
So the probabilities will be calculated given the energy levels
as

fi=Z"exp(- €/T), (1)

where Z is the partition function.

We interpret the fact of food appearance in the cell free of
a specific agent as an environmental proposal to enhance the
first kind of resource accompanied by a decrease of the sec-
ond kind of resource. Let the Boolean variable, a, denote this
proposal and a=0 if the environment offers to change the
cell. The appearance of the unit of the first resource in the
cell occupied by the given agent can be considered as an
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TABLE 1. The decisions ¢/(a,b) of the right brain agent (third
column) and the left brain agent, ¢/(a,b) (fourth column), which
takes into account the environment proposal a to it and also the
proposal b to its friend and enemy, correspondingly. The right
brainer a goes to a new cell [environment proposal a=0 and deci-
sion /(a,b)=0] only if b=1: its friend B occupies this very cell.
The left brainer « does not go to a new cell [environment proposal
a=0 and its decision ¢/(a,b)=0] only if b=1: its enemy B3 occupies
this very cell.

a b W(a,b) (a,b)
0 0 1 0
0 1 0 1
1 0 1 1
1 1 1 1

offer for the agent fo preserve its second resource and to
enhance its first resource.

Let a=1 if the environment offers the agent to keep its
cell. This proposal is favorable to any agent and it is sug-
gested that any agent will accept it unconditionally.

It is also assumed in [1] that every agent can accept (A) or
reject (R) the proposal to change the cell (a=0) it occupies
interacting with a randomly chosen partner (including itself).
This situation, where all pairwise interactions are allowed,
corresponds to the mean-field topology of the agent network
[21].

Specifically, it is supposed that if food is offered to agent
a, this agent regards that it is also offered to agent . In
accordance with Lefebvre [22], we also suppose that an
agent can consider two types of relations with another agent,
i.e., friendly and competitive ones. The decision of agent «
depends both on the environment proposal a to agent « and
also on its proposal b to agent B; from the point of view of
agent o the same unit of the first resource is offered to agent
B. Now an intention of agent « becomes a function of two
variables, y=yda,b) [see Fig. 1(c)]. The intentions of these
two types of agents can be considered as a function of two
variables: a and b. As it is argued in [1], there are two rea-
sonable functions of this type which can be referred to as
those with right brain dominant and left brain dominant
ones. In fact, for the right brain agent o which considers the
other agent 3 as its friend we obtain its function values pre-
sented in the third column of Table I. The right brain agent
accepts the environment proposal to consume the food in a
new cell only if its friend (with which agent « interacts)
already occupies it (second row of the third column). En-
emies do not influence intentions of the right brain agent at
all: this is also true for the left brain agent which interacts
with a friend [corresponding values of ¢/(a,b) are not pre-
sented in Table I].

On the contrary, for the left brain agent which takes into
account the situation with an enemy the decisions ¢/(a,b)
are presented in the fourth column of Table I. Focusing again
on the second row of this column we conclude that the left
brain agent does not accept the environment proposal to con-
sume the food in another cell, unless the environment de-
mands of the enemy to change its cell (so that the food be
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offered just in the cell which is occupied by a random enemy,
with which agent « interacts).

In the case of agent self-interaction [when it randomly
chooses itself for interaction (8=a)], the situation can be
different. In [1] it was suggested that in this case the right
brain and left brain agents act identically unconditionally
accepting the environment proposal to change the original
cell. This choice makes the model asymmetrical: the self-
interacted right brain agent effectively uses the left brain
strategy but not vice versa. It was demonstrated in [1] that
the dynamic rules described above lead to the Bose-Einstein
distribution in the population of friendly right brain agents

1
nie) = e (2)

and in the population of competitive left brain agents (in the
asymmetrical model) the equilibrium distribution is as
follows:

_N
ele T L 17

3)

nie) =

In Egs. (2) and (3) w denotes the chemical potential which
can be determined from normalization condition

2ni(e)=1. 4

In this paper we concentrate on a symmetrical variant of
the many-agent model when a self-interacted left brain agent
effectively becomes a “right brain” one rejecting the environ-
ment proposal to leave its original cell. In this case one can
easily see that at equilibrium the distribution of such agents
is described by a function slightly different from that given
by Eq. (3):

N-1
elemIT L 17

)

ne) =

Note that distributions (3) and (5) are Fermi-Dirac ones with
degenerated energy levels (with the number of degenerated
states G=N and G=N-1, correspondingly).

It is easy to show that the model considered in [1] coin-
cides with the equivalent urn model having the following
rule of ball urn-to-urn transition: For a randomly chosen ball
located in the urn j the probability to occupy the urn i chosen
with probability (1) equals

sign(s)

Pj—i= (s+ny), (6)

where n; is the number of balls in the ith urn, and the param-
eter s defines the type of statistics:

(i) s=1 for bosons: final distribution is described by Eq.
(2).

(ii) s=—N for fermions with up to N balls in a cell: dis-
tribution (3).

PHYSICAL REVIEW E 77, 031126 (2008)

(iii) s=—(N-1) for fermions with up to N—1 balls in a
cell: distribution (5).

Further we are to distinguish the equivalent model from the
standard urn model, for which the transition rule is chosen as
[23]

(s+n)

p}—»t = (7)

(s+n,-)+(s+nj).
For the given s value they lead to the same equilibrium but
the ball dynamics is different for the equivalent and standard
models which display nonequivalent results in the SUSY
search.

Later we show that the symmetrical many-agent model
and its equivalent urn model have specific SUSY properties
which are exerted in coincidence of some specific statistical
characteristics of agent (or ball) histories described which
have the Bose-Einstein and Fermi-Dirac distributions in ther-
modynamic equilibrium. Note that this symmetry manifests
itself statistically and can be found only by averaging many
statistical ensembles at equilibrium. In fact, we tend to in-
vestigate different codes of bosonic and fermionic system
fluctuations in thermodynamical equilibrium.

III. CODING OF HISTORIES

A Monte Carlo modeling [24] of both the equivalent and
standard urn systems can be performed according to the fol-
lowing procedure.

(1) Randomized initial distribution of balls in urns is gen-
erated.

(2) Random ball is chosen and its current location (urn j)
is determined.

(3) Destination urn i is chosen according to probability

(1).

(4) Chosen ball goes to urn i according to probability (6)
or (7).

(5) Process proceeds until equilibrium state is reached
and kept.

Let us investigate the history of balls in the systems at ther-
modynamical equilibrium. Each step of the algorithm can be
characterized using the following symbolic coding. Let us
call the choice of the destination urn i as a “proposal” to the
ball to go to the urn i. The ball can either accept or reject this
proposal. According to its decision the ball can either szay in
the initial urn j or go to the destination urn i. Only three
situations can occur (Fig. 2).

(1) The destination urn i differs from the current ball urn
Jj and the ball accepts the proposal to go to the urn i. We can
denote this situation using the pair of characters AG (accept
and go).

(2) The destination urn i differs from the current ball urn
Jj but the ball rejects this proposal and stays in the urn j. We
can denote this situation using the pair of characters RS
(reject and stay).

(3) The destination urn i coincides with the current ball
urn j. In this case the ball unconditionally accepts the pro-
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FIG. 2. Three different cases with a ball and their coding: Top:
random ball accepts the environment proposal to go to the other
urn; Middle: it rejects this proposal; and Bottom: it accepts the
proposal to stay in the original urn.

posal and stays in the urn j. We can denote this situation
using the pair of characters AS (accept and stay).

We can derive two special binary codes by omitting the
second or the first character in the two-character code. The
first choice gives us characters A and R—we name this code
as AR. The second choice leaves us characters S and G and
we name this code as SG [18]. If we describe the history of
the given ball using the AR or SG codes, we will evidently
lose some information about events. In particular, if any ball
accepts the proposal (A) it can either stay in the initial urn or
go to the other one. On the other hand, if the ball stays in the
initial urn this implies that it either accepts the proposal to
stay there or rejects the proposal to go to the other urn.
Therefore it is evident that such two binary coding schemes
are not equivalent: it is impossible to reconstruct the AR ball
history given the SG history and vice versa. Both of these
coding schemes can be considered as a projection of the full
three-event history coding on two orthogonal planes. As it
has been shown earlier [18], a possibility to code ball histo-
ries using two different schemes opens the way to relate
bosons and fermions statistics by calculating the degree of
ultrametricity of all the history sets. We demonstrate here
that this permits us to study both SUSY and SUSY breaking
phenomena in an equivalent urn model.

It can be expected that at high temperatures we will ob-
serve an evident symmetry between any statistical character-
istics of fermion and boson history sets coded by using AR
and SG (and vice versa) codes in the populations of competi-
tive left brain agents and also cooperative right brain agents,
correspondingly. Indeed, e.g., for the boson occupying the ith
cell (urn) the conditional probability for acceptance (A) of
the environment proposal is

) 1

P Ale)=Z e+ S 7o/ Szl T—

J#EI JFi N

1
j#i
On the other hand,
i+ 1
P"(Rle) =2, z-le—f/T(l - %) ©)
j#i

where
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P’(Ale;) + PP(R|e) =1. (10)
For the SG code

P¥( S|e) =Z—l[e—ei/T+ D e—ej/T(l _ M)]’ (11)

j#i N
i+ 1
P%a@=22%ﬁdﬂﬁﬂ, (12)
J#i
where
P’(S|e) + P’(Gle) =1. (13)

It is easy to recognize that for fermions we have the same
relations, if we replace A by S and R by G:

P/(Sle) = P"(Ale), (14)
P/(Gle) = P'(Rle), (15)
P/(Ale) = P"(Sle), (16)
P/(R|e) = P’( Gle). (17)

The probability of the symbol in a string can be obtained as
P"({A.R.S.G}) = P({A.R.S,G}|€)P"/(e).  (18)

In a high temperature limit P?/c¢~¢/T In this case we can
suggest the existence of symmetry between fermions and
bosons in two binary coding schemes (AR« SG) if we as-
sume that the code letter appearance in the histories of dif-
ferent agents is not correlated. It means that if we know the
characteristics of the set of boson histories in the AR coding,
we immediately obtain the same values for fermions in the
SG coding and vice versa. The symmetry between bosons
and fermions relative to these code changes can be treated as
supersymmetry. Note that no specific codes for fermions and
bosons appear in the high-temperature region, i.e., the sym-
metry is reciprocal. At low temperatures one cannot expect
that this simple symmetry is preserved because bosons and
fermions are apparently subject to different statistical distri-
butions. Nevertheless, it turns out that even in this case a
remarkable relation between some characteristics of the bo-
son and fermion history sets holds true. This is expressed as
a very close vicinity of the ultrametric properties of these
sets for bosons in the AR coding and for fermions in the SG
coding (but not vice versa). In fact, it means there have ap-
peared specific coding schemes for their ensembles where
supersymmetry observed at high temperatures breaks. To see
this phenomenon we have to consider the definiiton of the
ultrametric properties just mentioned.

IV. ULTRAMETRICAL PROPERTIES OF HISTORY SETS

Ultrametricity is a well-known and widely used concept
in the physics of disordered systems, especially spin glasses
[25], neural networks [26], etc. As it is formulated in [27]
ultrametricity implies that the distance among different states
is such that they can be put in a taxonomic or genealogical
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tree so that the distance between two states is consistent with
their position in the tree. In other words ultrametric data has
a hierarchical structure. For example, in the Sherington-
Kirkpatrick [28] model of spin glasses (a mean-field variant
of the Edwards-Anderson model [29]) the set of ground
states proves to be ultrametrical. This ultrametricity is not
modified when the spin-glass disorder realization changes. It
is closely connected with some other concepts, e.g., it is
rooted in the overlap equivalence which states that all mutual
information about a pair of equilibrium configurations is en-
coded in their mutual distance or overlap. An ultrametric
topology is closely related to p-adic number theory [30]. The
starting point for applying p-adic numbers to theoretical
physics was a string theory—an attempt to proceed with
p-adic (and more general ultrametric) amplitudes, instead of
real and complex ones [31,32]. Murtagh presented many ex-
amples of using ultrametrical properties when studying prac-
tical data sets rather general in nature [33]. The goal is to
find an inherent hierarchical structure in data, which can be
done by calculating its degree of ultrametricity. This param-
eter can be used, e.g., for fingerprinting data sets. By doing it
this way, it was found, e.g., that chaotic time series are less
ultrametric than financial, biomedical, or meteorological
time series [34].

It is also well-known [34] that high dimensional, sparsely
populated data spaces can be characterized in terms of the
ultrametric topology. Ultrametric spaces are characterized by
a strong triangular inequality d(x,z)<max{d(x,y),d(y,z)}
for any triplet x,y,z. From this one of the most prominent
features of ultrametric spaces follows that any triangle
formed by any triplet is isosceles with two equal large sides,
or is equilateral. It proves reasonable to study how well a set
of ball histories (agent memories in many-agent modeling)
can be embedded in such an ultrametric topology [34]. In
this sense the question is to quantify to what degree the given
metric space is ultrametric. Using two different incomplete
memory codings described in the previous section we can
calculate the degree of ultrametricity of the memory sets ap-
pearing in different statistical tests. We have preliminarily
analyzed some agent memory sets [18] in the model de-
scribed in [1] in the space of vectors with binary-valued
components (corresponding to the two information incom-
plete schemes presented above) and the Hamming metrics. In
contrast with the sophisticated approaches to the definition of
the parameter proposed, e.g., in [35-37], we use just the
fraction of triplets satisfying the strong triangle inequality as
a measure of ultrametricity. We study one more parameter—
the fraction of improper isosceles triangles to the total num-
ber of isosceles and proper ones—fraction of isosceles. In
the ultrametric topology this parameter reflects a form of the
data tree structure (Fig. 3). In our simulations we character-
ize agent’s memory (ball’s history) with m-component vec-
tors (z;,...,z,), where z;E{A,R} for the first coding scheme
and z; E{S, G} for the second one. The most surprising result
of the modeling was the discovery [18] that at rather low
temperatures both parameters, i.e., the degree of ultrametric-
ity and the fraction of isosceles, seem to be very close for the
memory sets of agents obeying Bose-Einstein and Fermi-
Dirac statistics if the former uses the AR coding, while the
latter—the SG coding. On the other hand these two param-
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FIG. 3. The depth [ of the first common ancestor of the objects
O; and O; is used to compute the distance between them. Two trees
with different degrees of isoscelity are presented. Top: all triangles
for all triples (0;,0;,0;) belonging to the set of four objects are
isosceles [triangle sides—(1,2,2)], but not proper ones—the degree
of isoscelity equals one, /=1. Bottom: all triangles are proper ones
[triangle sides—(1,1,1)]—the degree of isoscelity equals zero, [
=0. So the ultrametricity describes a general structure of the tree,
while the fractions of isosceles describes its form.

eters differ substantially for the opposite choice of coding
schemes. This observation can point to a possible importance
of both degree of ultrametricity and fraction of isosceles as
informative parameters of particle dynamics in quantum sta-
tistics and, as it will be shown later, to a possible form of
symmetry breaking.

A. High temperatures

At high temperature we really can observe the expected
(rough) coincidence of two pairs of curves (for bosons in the
SG coding and for fermions in the AR coding and vice
versa). Figures 4 and 5 present the dependence of these two
parameters for thermodynamic equilibrium ensembles of 50
agents (balls) in the symmetrical many-agent (or in equiva-
lent urn) model obeying both Bose-Einstein statistics (2): s
=1 in Eq. (6) and symmetrical Fermi-Dirac distribution (5):
s=-49 in Eq. (6), m in interval m €[10,100]. We found that

T=16
0281 —m— SG bosons (s = 1)
—O0— AR bosons (s = 1)
0.24 1 —A— 8G fermions (s = - 49)

_ —v— AR fermions (s = - 49)

0.20+ \a N

) Y \ N\

0.16 S
Ké\ \9§5\
o —

0.12 S—

—
T
0.08 T T T T T
0 20 40 60 80 100
m

FIG. 4. For a symmetrical many-agent model (and for an
equivalent urn model) at high temperatures the mean values of the
degree of ultrametricity of the history set of cooperating right brain
dominant agents (bosons) in the AR coding and ones of the com-
peting left brain dominant agents (fermions) in the SG coding and
vice versa practically coincide. N=50, T=1.6.
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1.0
— 1)
A 67@’@:6;9
= — ﬁQ”’
0.9 = "
/ /:% =
084 2/ '/
—
0.7 1 T=16
—m— SG bosons (s = 1)
J —O0— AR bosons (s = 1)
0.64 —A— SG fermions (s = - 49)
v —v— AR fermions (s = - 49)
0 20 40 60 80 100

m

FIG. 5. For a symmetrical many-agent model (and for an
equivalent urn model) at high temperatures the mean values of the
fraction of isosceles of the history set of cooperating right brain
dominant agents (bosons) in the AR coding and ones of the com-
peting left brain dominant agents (fermions) in the SG coding and
vice versa practically coincide. N=50, T=1.6.

the system reaches equilibrium after approximately 20 updat-
ings of each agent cell (urn) location. From Figs. 4 and 5 it
follows that at T=1.6 average values of the degree of ultra-
metricity and the fraction of isosceles of the history sets of
50 agents (balls) calculated by averaging the results of 2000
tests are indeed very close for the AR coding of bosons and
the SG coding of fermions [18] and vice versa in the whole
interval of memory lengths.

B. Low temperatures: Appearance of specific codes

However, at low temperatures a different phenomenon is
observed: mean values of the degree of ultrametricity and the
fraction of isosceles for bosons in the SG coding and for
symmetrical fermions in the AR coding which are very simi-
lar in a high-temperature region become entirely different. At
the same time these characteristics for bosons in the AR cod-
ing and for fermions in SG coding remain very close. This
means both effects of SUSY breaking and the appearance of
specific coding schemes, i.e., AR for bosons and SG for fer-
mions in a sense that at low temperatures their characteristics
seem to be equivalent by changing the AR code for bosons to
the SG code for fermions but not vice versa (Figs. 6 and 7).
Note that the closeness of the ultrametrical parameters for
complementary specific coding schemes (AR for bosons and
SG for fermions) does not imply that they are statistically
indistinguishable. On the other hand, it turns out that for
many memory lengths, m, just the fraction of isosceles sat-
isfies the test for the statistical equivalence (see Table II). It
can indicate that this very characteristic rather than the de-
gree of ultrametricity may be more suitable for use in the
study of symmetry properties of the model.

We can admit that at high temperatures there is complete
(approximate) symmetry between the coding schemes for
bosons and symmetrical fermions: given the ultrametrical
property value for bosons in the AR coding scheme, we can
derive this value for symmetrical fermions in the SG coding
scheme and vice versa. It should be noted that both the ob-
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T=02

—m— SG bosons (s = 1)
—O— AR bosons (s = 1)
—A— SG fermions (s = - 49
—v— AR fermions (s = - 49)
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0.20 \\v
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—
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0.04 . : . . .
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FIG. 6. For the symmetrical many-agent model at a low tem-
perature the mean values of the degree of ultrametricity for boson
(s=1) histories in the AR coding scheme practically coincide with
those for fermion [s=—(N—1)] histories in the SG coding, but not
vice versa. N=50, T=0.2.

served symmetry and its breaking for the many-agent model
and for its equivalent urn model are not trivial. For example,
in studying the standard urn model with transitional prob-
ability (7) we failed to find any analogical effects of symme-
try and its breaking, despite the fact that both urn models
have identical equilibrium distributions. So, for the sym-
metrical version of the many-agent model and for the equiva-
lent urn model at high temperatures there exists an approxi-
mate symmetry among ultrametric characteristics of sets of
boson and symmetrical fermions histories. On the other
hand, this reciprocal coding scheme symmetry evidently
breaks at low temperatures. Hence the most intriguing ques-
tion is associated with the physical nature of this breaking
and the determination of the phase transition temperature. In
the next section we present some estimates which relate the
phenomena of transition and quasicondensation of an essen-
tial part of fermions in the ground state.

1.0
/Q/A:g:g:g:e
e
0.9 o
37‘;/ /./I/.
084 —
/./
= 0.7+ /
T=02
—m— SG bosons (s = 1)
061 —0— AR bosons (s = 1)
—A— 8G fermions (s = - 49)
0.5 L —v— AR fermions (s = - 49)
0 20 40 60 80 100
m

FIG. 7. For the symmetrical many-agent model at low tempera-
ture the mean values of the fraction of isosceles for boson (s=1)
histories in the AR coding scheme practically coincide with those
for fermion [s=—(N—1)] histories in the SG coding, but not vice
versa. N=50, 7=0.2.
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TABLE II. The degree of ultrametricity (U) and fractions of isosceles (I) of agent’s histories having Bose-Einstein (2) and Fermi-Dirac
(5) statistics in the AR and SG coding schemes correspondingly, at 7=0.2 they are very close, but, in general, they are statistically different.
The closeness of the corresponding values is even more profound for the fraction of isosceles, /. For some m no statistical difference of /
values was revealed. The number of agents N=50. The mean values are obtained by averaging on 2000 trials.

m 10 20 30 40 50 60 70 80 90 100
U bosons (AR) 0.2643 0.1909 0.1555 0.1348 0.1207 0.1100 0.1022 0.0955 0.0901 0.0855
—fermions (SG) 0.2654 0.1911 0.1566 0.1356 0.1213 0.1107 0.1026 0.0959 0.0905 0.0857
I bosons (AR) 0.8666 0.9037 0.9211 0.9314 0.9385 0.9440 0.9479 0.9514 0.9539 0.9563
—fermions (SG) 0.8660 0.9039 0.9208 0.9312 0.9384 0.9437 0.9477 0.9511 0.9537 0.9561
V. STUDY OF THE SUSY BREAKING NA
TO = . ( 1 9)
kIn N

Note that the enormous degeneration makes fermion dis-
tributions (3) and (5) even more “bosonic” than the bosonic
distribution (2). It is expressed, in particular, as a sharp tran-
sition to the state where a considerable part of the fermions
are concentrated in the ground state, i.e., sharper than in the
case of quasicondensation of bosons at low temperatures
(Fig. 8). This transition occurs at T;=0.4. However, this is
not a temperature at which all of the fermions [but one in the
case of distribution (5)] concentrate in the ground state: the
corresponding  temperature is  considerably  lower
(T,=0.02) and at this point the chemical potential of fermi-
ons also demonstrates a sharp growth—Fig. 9. As it will be
demonstrated later just the temperature 7= 0.4 is the critical
temperature of the SUSY breaking. Another possibility that
this phenomenon is connected with that of quasicondensation
of bosons at higher temperatures will be rejected.

Though there is no real condensation in finite systems it is
possible to identify Bose-Einstein “transition temperature”
which corresponds to the concentration of a sizable fraction
of N agents in the ground state. Approximately [38]

bosons: s=1
0.8 —

0.6

02 - fermions: s=-(N-1)

0.0 T T T
0.0 0.4 0.8 1.2 1.6

FIG. 8. Relative occupation of the ground state (e,=0) versus
temperature for 50 bosons and fermions distributed in ten equidis-
tant energy states (Ae=0.1) according to forms (2) and (5). For
fermions a more rapid growth occurs. These curves are calculated
from the chemical potential values obtained as numerical solutions
of Eq. (4).

In our simulations (N=50, A=0.1, k=1) To=3.1 and this
value agrees with the graph of the ground state occupation
by bosons (Fig. 10).

However, in our many-agent and equivalent urn models
the transition takes place at a lower temperature. In Fig. 11
the distance between two curves of ultrametricity for bosons
in the SG coding and for fermions (symmetrical) in the AR
coding takes on small values approximately at 7=0.4-0.6.
On the other hand, if we recall the dependence of the ground
state occupation by bosons and fermions at equilibriums (2)
and (5) (Fig. 8), we can see that this state becomes essen-
tially occupied by fermions just at 7=0.4. The temperature
of the fermion quasicondensation can be estimated from the
following relationship:

N-1
n0(€= O) = e(o_,u)/T+ 1 =N, (20)
where y=0(1). From Eq. (20) it follows that
en= (21)
-7y
On the other hand, from
0.1 4 1.00
7 080 -
~ 0.0
% | &L 0.60 -
o014 040
T T 0.20 T
0.0 0.1 02 0.0 0.1 02
T T

FIG. 9. The curve of chemical potential is convex at the tem-
peratures T>T,=0.02 and concave below this temperature (left).
This saddle point corresponds to the condensation of N—1=49 fer-
mions in the ground state which is expressed as a constant in the
graph of relative ground state occupation (right).
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—0.8+

FIG. 10. Relative occupation of the ground state (corresponding
to €,=0) and chemical potential versus temperature for 50 bosons
distributed in ten equidistant energy states (Ae=0.1). The rapid
growth of the ground state occupation occurs below 7'=3.0.

N-1

= 22
=0 e(fk_ﬂ-)/T_i_ 1 ( )

and taking into account that energy levels are assumed equi-
distant (€, ,—€,=4) it can be easily derived that

o]

N
> (= Vet (UT) = —, (23)
5 N-1
where
1
Z,(UT) = D, e M = PRI (24)
k=0
For high temperatures 7> /A it can be shown that
T N
—log(1+eM) = —— =1, 25
Alog(l+e) = - (25)
therefore
AT =14 eM7, (26)
From Egs. (21) and (26) it follows that
A
T=——"—". (27)
log(1-v)

No condensation is observed if particles are uniformly dis-
tributed in energy, i.e., (Ny(€=0))=n/n,, where n; is the
number of energy levels. If the occupation of the ground
state exceeds this value at least by a factor of 2, we can
observe some kind of condensation. It means that

(No(e=0)) =25 (28)
n
In our case N=50, m;=10, A=0.1 we have (Ny(e=0))/N
=0.2, T.=—A’10g(1-0.2) =0.4 which agrees with the tempera-
ture of fermion quasicondensation (Fig. 8).

This can mean that the breaking of the coding symmetry
is presumably connected with the quasicondensation of fer-
mions rather than of bosons, though the behavior of bosons
is also relevant to this phenomenon.
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0.3

0.1 7

Euclidian distance

0.0 T T i

FIG. 11. The Euclidian distance between the dependencies U(T)
for bosons in the SG coding and symmetrical fermions in the AR
coding shows a rapid transition at the temperature between 0.4 and
0.6.

VI. MEANING OF SPECIFIC CODING FOR BOSONS AND
FERMIONS

It may be asked: what is the reason to start with a specific
model of “left” and “right” brain agents [1] to demonstrate
approximate SUSY properties of a more general and abstract
equivalent urn model? It is surprisingly enough that a many-
agent model can clarify, at least qualitatively, why the AR
coding becomes specific for bosons, and the SG coding for
fermions at low temperatures where the effect of SUSY
breaking occurs.

In the original model the agents solve a contradictory
problem: they try to hold two resources. By definition, fer-
mions are those agents which try to accept the environment
proposal (to consume food as agents), i.e., to enhance the
first (physical) resource. On the other hand, bosons try to
hold their current cell in order to save their second (so called
mental) resource.

In this sense they have built-in automatic strategies which
permit them to hold the first and the second resources, cor-
respondingly. By doing so, however, they risk losing their
uncontrolled resource (the second for fermions and the first
for bosons). From this point of view for the agents it will be
extremely useful to memorize the cases of the losing or re-
ceiving the second (for fermions) and the first (for bosons)
resources, or to count them in order to control their quantity.

Interesting enough, for bosons this will correspond to
memorizing the cases when they accept or reject an environ-
ment proposal (to consume or not consume food). On the
contrary, for fermions it will correspond to memorizing the
cases when they sfay in the current cell or go to another one.
It just corresponds to the use of the AR code in the boson
memory and the SG code in the fermion memory. Such rea-
sonability seems very intriguing in the models considered.

The case of standard urn model. It should be noted that
both the observed effects of symmetry and its breaking for
the original many-agent model and its equivalent urn model
are not trivial. For example, when studying the standard urn
model with the transitional probability (11) we found a more
complicated phenomenon (Fig. 12), despite the fact that both
urn models have identical equilibrium distributions. At low
temperatures only the curves of ultrametric properties (espe-
cially the degree of ultrametricity) of bosons in SG coding
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FIG. 12. The case of the standard urn model at low temperature
T=0.2: no specific coding schemes are observed because, e.g., for
fermions the degree of ultrametricity in the AR and SG coding
schemes almost coincide both with each other and the same param-
eter characterizing bosons in the SG coding scheme.

change dramatically. Three other curves seem to be very
close. So, no specific coding schemes appear. The reason is
that these two forms of the urn model have evidently differ-
ent fluctuation dynamics and, hence, different forms of histo-
ries.

At last, note that the symmetry appearance and breaking
in the original many-agent model [1] and its equivalent urn
model do not occur because of a trivial equivalence of the
bosonic and fermionic models, since, otherwise, no symme-
try breaking takes place.

VII. SUMMARY AND CONCLUSIONS

In summary, some extensive simulations of a symmetrical
modification of the model proposed in [1] have been per-
formed. Some arguments have been presented in favor of
considering just the symmetrical variant of the original
model which permits one to expect a reciprocal coding
scheme symmetry (SUSY-like property) of ultrametrical
characteristics of boson and fermion history sets at high tem-
peratures. An analog of a supersymmetry operator which re-
lates bosons and fermions can be thought of as a change of
the AR coding of boson histories for the SG coding of fer-
mions and vice versa: this converts the ultrametrical charac-
teristics of the boson ensemble into those of the fermion
ensemble (and vice versa). This operation can be performed
by projection of a full three-character code onto a corre-
sponding incomplete binary code. The symmetry studied is
statistical in nature and can be seen only by averaging on
many statistical realizations of agent history sets. This sym-
metry breaks at low temperatures, when the characteristics of
bosons and fermions in SG and AR coding schemes, respec-
tively, become entirely different (see Fig. 13). It is worth
noting that these coding schemes are specific for both the
fermion and boson in-built strategies. Indeed, the noninter-
acted right brain agents (bosons) stay (S) in the current cell
trying to hold their second resource, while the noninteracted
left brain agents (fermions) accept (A) any environment pro-
posal. On the contrary, at low temperatures, only ultrametri-
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fermions bosons
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fermions <«—» bosons

(code symmetry) SUSY
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AR bosons ~ SG bosons ~
SG fermions AR fermions
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Quasi-uniform
food proposal
T m m cell energy
9 broken SUSY
U AR bosons ~ u AR fermions
SG fermions ’
f  Highly
SG bosons non-uniform
/ food proposal
Specific codes ‘Non-specific codes \

m m cell energy

FIG. 13. Two incomplete coding schemes can be considered as
projections of a full three-dimensional coding onto the two axes.
For fermions (top left) the acceptance (A) of the environment pro-
posal is a basic in-built strategy in the absence of agent interactions.
The rejection (R) of such a proposal takes place only if food (short
vertical arrow) is proposed in a cell occupied by the partner () the
referent agent interacts with. For bosons (top right) staying in their
current cell (S) is a basic in-built strategy in the absence of agent
interactions. The agent goes (G) to the other cell only if food is
proposed in a cell occupied by the partner (B) the referent agent
interacts with. So the AR coding is specific in automatic decision
making for fermionlike agents while the SG coding for bosonlike
agents. The interaction rule is symmetrical under the change A < S,
R~ G, fermions« bosons. At high temperatures (uniform food
distribution) this leads to symmetry of any statistical characteristics
of agent histories (middle). At low temperatures (corresponding to a
highly nonuniform food proposal) this symmetry breaks (bottom).
The values of ultrametrical characteristics of fermion and boson
histories (agent memories) in the AR and SG coding schemes, re-
spectively, become completely different. However, the ultrametrical
characteristics of a fermion and a boson in the SG and AR coding
schemes, respectively, still coincide. So the memory-specific codes
for fermions—SG—and bosons—AR—are opposite to those rel-
evant to in-built strategies.

cal characteristics of bosons and fermions in AR and SG
coding schemes, respectively, hold very similar values.
These are the characteristics of agent histories, which can be
memorized. This fact is interpreted as the appearance of
some specific memory codes for both the right and left brain
dominant agents in the model described in [1]. Some esti-
mates for the critical temperature were obtained and proved
to be close to that characteristic of the fermions condensation
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at a highly degenerated ground state. Similar results were
obtained using an equivalent urn model. By studying the
standard urn model with different fluctuation dynamics, it
was found that the phenomenon we are interested in was
smashed. Using the many-agent formulation of the model an
interesting meaning of the specific memory coding schemes
for bosons and fermions is presented. This indicates that the
agents of these two types have a specific memory of the
events connected with the loss of the resource these agents
do not control automatically. This implies that history can be
memorized by cognitive agents and this memorizing ability
becomes beneficial property needed for their survival. This
also means that the left brain dominant agents (fermions)
automatically enhance their first resource (if the interaction
with their enemies or self-interaction does not prevent this)
and memorize the second one to control its amount. In prin-
ciple these agents will be able to change their strategy if the
situation with the last resource becomes critical. Similarly,
the right brain dominant agents (bosons) automatically hold
their second resource (if the interaction with their friends or
self-interaction does not enforce them to move to a new cell)
and memorize the first one (food) to control its amount
(again, the strategy change is possible).

In a sense, the agents considered have both a genetic
memory (storing their in-built decision-making strategies)
and a historical memory of their decision and action history.
This makes the model more flexible and interpretive. One
can say that the memory itself can be considered as a phe-
nomenon emerged at the phase transition when a proposal of
food becomes highly nonuniform. Note that a model which
considers mixtures of agents of different types (right brain
and left brain dominant ones) with incompatible incomplete
memories is of interest in view of further studies.

Remember that the symmetry breaking phenomenon is an
important feature of econophysical models. If these models
should be supersymmetrical, such a phase transition could be
interpreted as a sudden differentiation of the agent’s memo-
ries at low temperatures which corresponds to a high in-
equality of environment proposals in different world cells.
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There are many papers which consider both inequality in the
society [7,39] and emergent properties in complex systems
[40]. From this point of view, the results of this paper sup-
port the position that economical agents themselves should
be considered as complex systems with their emergent prop-
erties (specific memory) and economics as a complex system
of complex systems [41].

As a matter of fact, the results presented in this paper pose
more questions than they actually solve. It is unclear why the
degree of ultrametricity and the fraction of isosceles are rel-
evant properties of the SUSY and SUSY breaking phenom-
ena in fermion and boson ensembles. We believe that in
many cases we have revealed only the fact of closeness
among these parameters rather than their coincidence. It is
also unclear why the fraction of isosceles turns out to be a
more appropriate parameter for revealing symmetry between
the ensembles of boson and fermion history sets. However, it
may happen that just the use of this parameter can result in a
method to study ultrametrical properties of data sets of gen-
eral nature [33].

Surely, it is quite interesting and important to study the
effect of possible statistical indistinguishability of ultrametri-
cal properties for different history length, m, agents number
N, etc. One can also learn what happens at lower tempera-
tures, where all fermions but one occupy their highly degen-
erated ground state. Note again that we have presumably
outlined numerical indications to some possible symmetry
which is statistical in nature. It may be possible to find more
relevant characteristics of agent histories to express such
symmetry. However, we hope that in any case it seems rea-
sonable to continue studying the properties of history sets by
applying the coding schemes discussed.
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